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The structure of shock-waves in gas mixtures is studied. The separation of com- 
ponent velocities and temperatures is described. Velocity overshoot is never 
found to  exist. Other effects, namely, temperature overshoot and undershoot 
and velocity undershoot are shown to exist in a manner which is self-consistent 
with the derivation of the governing equations. 

1. Introduction 
In  an early investigation Cowling (1942) considers shock structure in a binary 

mixture by employing the Chapman-Enskog mixture equations (Chapman & 
Cowling 1939). Viscous and heat conducting effects are neglected so that diffusion 
is the only dissipative mechanism. A notable feature of this study is that Cow- 
ling finds a smooth transition between the up- and downstream states, provided 
that the shock strength is sufficiently weak. Later Dyakov (1954) included the 
remaining dissipative effects and was able to find an analytical description of 
weak shock-waves. (Dyakov’s equations, although of the same form as the 
Chapman-Enskog mixture equations, have their origin in a macroscopic de- 
rivation, Landau & Lifshitz (1959), and hence in principle have a more general 
application.) Sherman (1 960) also considered the structure of weak shock-waves, 
and in the process brought to light certain new and peculiar effects. Among these 
is the possibility of a trace element of heavy gas having a velocity above its 
upstream value. This is the, by now, controversial velocity overshoot effect. 
Sherman also numerically integrated the exact Chapman-Enskog mixture 
equations for various mixture and shock parameters. More recently Oberai 
(1965, 1966), using Mott-Smith’s bimodal distributions (Mott-Smith 1951), also 
considered the mixture shock-wave problem. 

As is well known this last approach is best applied to strong shock-waves. Our 
approach is aimed more at  weak shock-waves, so for this reason we will not have 
occasion to discuss Oberai’s work. Finally, we mention two recent experimental 
investigations, Center (1967) and Rothe (1966), which bear strongly on the 
overshoot controversy. 

In  addition to describing the gross transition from the upstream to the down- 
stream equilibrium points, a shock analysis of mixtures must describe the 
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separation of the components of the mixture. The components separate in the 
sense that the component velocities differ (and hence density ratios vary). Also 
the random energies of the components about their own velocities, i.e. their 
temperatures, differ. A further complication is the fact that these effects occur 
on different scales. Both velocity and temperature differences can linger long 
after the shock transition. As a rule, however, the latter is the persistent effect 
in most cases. In order to describe shock structure the two fluid mixture equa- 
tions will be used (Goldman & Sirovich 1967, 1969). We now briefly describe 
these in comparison with the Chapman-Enskog mixture equations. 

Both the mixture and simple gas theories of Chapman-Enskog (Chapman & 
Cowling 1939) follow from the expansion of the distribution function in a small 
parameter 8. This quantity can generally be associated with the ratio of micro- 
scopic to macroscopic scales. Denoting the mean-free-path by 1 and a typical 
macroscopic scale by A the small parameter in a simple gas theory is 

c0 = l/A. (1) 

An examination of the comparable mixture development (Goldman & Sirovich 
1967, 1969) shows that instead of (1) the small parameter becomes 

= l/CA, 

where C is related to the Schmidt number Sc, through 

( p  is mass density, Ti number density, ma and mB the molecular masses). Unlike 
Sc, C is relatively insensitive to concentration changes (Goldman & Sirovich 
1967). Since C can be quite small (for argon-helium mixtures, C z 0.3 and 
xenon-helium mixtures C w 0.15) small el, see (2), can be quite restrictive. 

In  Goldman & Sirovich (1967, 1969) the Boltzmann equations for mixtures 
are investigated under the milder condition that eo, see (1)) be small. It is shown 
there that a macroscopic theory still follows. This theory, which reduces to the 
Chapman-Enskog theory when C = O( 1)) contains component temperature and 
velocity differences. A new equation describes the former and a generalized 
diffusion equation describes the latter. 

One of the main consequences of the shock-wave solution of the two-fluid 
equations is the elimination of the Sherman anomaly. Another interesting aspect 
of the calculation is the description of temperature separation even when 
C = O( 1) and this is a higher order effect from the point of view of the Chapman- 
Enskog theory. Although velocity overshoot is eliminated a number of curious 
new effects appear. These are: velocity undershoot, temperature overshoot, 
temperature undershoot. The circumstances under which these occur and their 
description are clear from the figures. 

In  view of these effects we give a relatively detailed discussion of the validity 
of the shock solutions. For the shock structure problem it is more appropriate 
to use instead of mean-free-path the closely connected quantity 

1 =p/m (3) 
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(ji is the mixture viscosity). % denotes the total mass flux 

m = p O  (4) 

(0 is the macroscopic velocity). The macroscopic scale A then is the shock thick- 
ness. One restriction on the validity of a solution is that eo < 1 since higher order 
derivatives are neglected in a Chapman-Enskog type derivation. A second type 
of approximation comes in the neglect of quadratic and higher degree products of 
component velocity and temperature differences. A plausible condition for the 
validity of a solution is that when the solution is substituted into the neglected 
terms these are small compared to the terms which have been retained. When 
this is true and also c0 < 1 we will say that the solution is self-consistent. The 
already mentioned peculiar effects can all be found to occur in a self-consistent 
manner. It is of interest to note that in those rQgimes in which the Sherman 
anomaly occurs, it fails to be self-consistent with the derivation of the mixture 
equations in the above sense. 

2. The two fluid shock equations 
For a steady one-dimensional flow the two fluid equations (Goldman & Sirovich 

1967, 1969) are: d d 
d j l p a 0 ,  = 0, @,8, = 0, 

In  the above and in what follows we take m, 2 ma. 5,  p ,  fi, 8, T, P and are, 
respectively, the number density, mass density, pressure, velocity, temperature, 
total stress and heat conduction of the composite gas. Subscripted quantities 
represent analogous component variables. D,,, Pa,  AT, d,, 17j, as well as other 
transport coefficients and 'cross-sections', are defined in appendix A. y ,  a con- 
stant, is the ratio of specific heat of each of the component gases, and in all 
calculations will be taken to be Q. 

37 Fluid Mech. 35 
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The above set of equations are terminated by the ‘constitutive’ re1ations:t 

It is important for a number of reasons to have explicit conditions under which 
the above equations are valid. For example, when examining the shock solutions 
we will then be able to verify which solutions are self-consistant with the deriva- 
tion of the above equations. Quadratic expressions in temperature and velocity 
differences have been neglected in a number of places. Typical conditions for the 
neglect of these terms are given by 

(13) arises out of the stress equation (11) and (14) out of heat flow equation (12). 
In  addition the derivation of (5)-(12) depends on scale variations being smooth 
with respect the ‘mean-free-path’, (3). 

The composite continuity, momentum and energy equations (8), (9) and (lo), 
as well as the component continuity equations, are immediately integrable. 

P,o, = E,, (15) 

P g q 4  = z g ,  (16) 

po=p,o,+/i,o, = m, (17) 

p D + P  = 8, (18) 

akTo  p o s  02 + - + P O + Q  = -. 
y - 1  2 2 (19) 

The constants of integration in (15)-(18) are, respectively, the a, p and total 
mass fluxes, the total momentum flux and the total energy flux. Using these, the 
component and composite quantities are related by 

0, = W P a / P ) ( Q a -  q 9 ) 7  (20) 

Fg = F - (a,/a) (Fa - FF). (21) 

For later purposes it is convenient to define the number density averaged mass, 

f iT  =PI%;  (22) 

f i T  is not a constant, but on multiplying numerator and denominator by 0, we 
see that 

?Fir( -00)  = f i i T ( O O )  = f i T o .  

t It is clear that bulk viscosity may be included by a trivial redefinition of ,ii. 
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In  analogy with simple gas shock structure (Becker 1922), it  proves convenient 
to introduce the following normalization: 

The zero subscript denotes upstream quantities, and Po is the upstream value of 
viscosity. 

Introducing this normalization into the above relations and eliminating the 
densities through the flux relations (1 5), (1  6), we obtain the following dimension- 
less equations : 

Composite momentum : 

1 

Composite energy : 

1 ,  

Temperature diffusion : 

The coefficients d, and d2 are constants but the coefficients m,, p, K ,  K,, K ~ ,  D ,  
r ,  A, pa,  ,up are functions of the dependent variables. Explicit forms for the 
coefficients are given in appendix A. 

Apart from the parameters which specify the gas properties, the flow is 
characterized by three parameters, the mass ratio, the density ratio and the 
composite Mach number. The last is defined as 

M i  = @iTo OglykFo. (281 

Since gradients and differences of velocity and temperature must vanish at 5 CQ, 

and since mT has been shown to have the same value at  5 00 (mT( 5 00) = l),  the 
composite momentum and energy equations, (20) and (21), yield the classical 
Rankine-Hugoniot relations for composite velocity and temperature. 

37-2 
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A seeming paradox occurs in this connexion. If, for example, we allow m, to 

vanish and hold n, fixed, the Rankine-Hugoniot relations of a simple gas are not 
obtained. For in this case (24) becomes (mF Oi/ykpo) (qa/n) instead of ma ~ ~ / y l c ~ o .  
This paradox is resolved when one recognizes that the a-gas, although of zero 
mass density, still has a pressure +i,kPand an energy per unit volume, 

fi,kF/(y- 1). 

(The average speed of a-particles is infinite.) An interpretation of this limit might 
be that it gives a mixture of ,&particles and photons. However, the basic equa- 
tions themselves become suspect in this limit. 

The velocities and temperatures upstream and downstream can be expressed 
in terms of 6: 

1 
(29) 

T,( TCO) = T ( T ~ o )  = ~ [y k (1 -7) ( ~ ~ ( 1 -  6 )  + 6)4-y2(1 - 6 )  + 61. (30) 

U,( T 00) = U( T co) = - [y -c (y2( 1 - 6 )  + a)$], 
Y + l  

1 
(1+Y)2 

6 is related to the Mach number by 

We also introduce the shock strength parameter, B ,  by 

€ = [y2( 1 - 6) + 6]+ (31) 

(this differs from the e used by Sherman (1960), see appendix B). Inverting (31), 

and 

In terms of the Mach number 

(34) 

so that e varies between zero and unity as the Mach number varies from one to 
infinity. 

We introduce new velocity and temperature variables through (Grad 1952) 
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so that on comparison with (29), (30) we have 

w( T co) = ma$( Fco) = 5 1,  
t (  T co) = ts8( T co) = * 1. 

w(x = 0) = 0 

(39) 
(40) 

(41) 

Since the governing differential equations are autonomous, we may introduce 

which is sufficient to fix the origin. 

3. Perturbation method for weak shock-waves 
We now restrict attention to weak shock-waves, i.e. the shock parameter, 

see (31), e small. To do this we adapt a method, due to Grad (1952), used in the 
study of simple gases. 

Inspection of (24)-( 27) shows that the component variables frequently occur 
in the form of a velocity diffusion 

E EAW ua-u - - (wa-wWg)  = ~ 

1 - y + 1  Y + l  
and a temperature diffusion 

For this reason, in addition to the velocity and temperature, w and t ,  we take Aw 
and At as dependent variables. 

Assuming the monotonicity of o, we can regard t ,  Aw and At as functions of 
w ,  and expand 

(44) 1 t = to(w) + st,(w) + E 2 t 2 ( 4  + 0 ( 6 3 ) ,  

+ E ~ , w  + E 2 ~ , w  + 0 ( € 3 ) ,  = 

At = Aot + salt + GA2t + 0 ( c 3 ) .  

Substituting into (22), we easily have 

mT = 1 + E m p ~ , w  + qm$)alw + m p ~ , w  + r n p ( ~ , ~ ) 2 ) +  0(€3) ,  (45) 

with 

Since we will shortly show that Aow = 0, the :explicit forms of mg) and E$?) are 
unnecessary. Lastly, since l / E  is a measure of the scale variation in weak shocks, 
we renormalize the spatial variable by 

y = E X .  (47) 

Introducing (42)-(47), (35), (38) and (32) into (24)-(27), we find that the 
equations are identically satisfied to the zeroth order in e. To the first order in E 

A0w = 0, we find 

to = w ,  

Aot = 0. 
(48) 
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Going to  the second order in E ,  the composite momentum, composite energy and 
diffusion equations lead respectively to  

+y(dw/dy) + (y  - 1) t, + (1 - w2)  + m(T)yA, w = 0, (49) 
(50) -tl+Ko(y- 1) (dw/dy )+(ym~ ' -~ ,n~ ,ng0}A ,w+-~(1  - w 2 )  = 0, 

where CO is the upstream value of the modified Schmidt number (see appendix A). 
It should be noted that in (51) a term of O(e) has been retained. We have done this 1 1.8 
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FIGURE 1. A-He data at NTP. FIGURE 2. Xo-He data att NTP. 

because Co can be small for some gas mixtures. Figures 1 and 2 display transport 
coeEcient data for argon-helium and xenon-helium mixtures. In  both cases 
Co is relatively small. It is the retention of this term which distinguishes ( 7 )  from 
the classical diffusion equation and it is because of the possible smallness of 
CO that it must be retained. We notice also the factor mag/riiTU in the last term of 
(51). This is always less than unity as can be seen from 

The possible smallness of Co also plays a role in determining the temperature 
difference. It is now convenient t o  introduce 

t ,  = A,t+eA,t. (53) 
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Then the first non-zero order in At is governed by 

In this case it is seen that the smallness of Co permits a A,t + 0. 

can eliminate t ,  from (49) to obtain 
Equations (49), (50) ,  (51) and (54) are only weakly connected. Using (50) we 

[ + ~ + ~ 0 ( ~ - 1 ) 2 ] -  dw = { ( ~ - 1 ) ~ , 1 ~ n ~ ~ ( l - n ~ ~ ) - y 2 m $ ) ) A , o + - ( w ~ - l ) .  Y+l (55) dY 2 

I 
u - A I W  phase plane 

FIGURE 3. Direction field and integral curve for two fluid shock wave. 

Then using (55) in (51) we get 

( Y + ' ) D O ( ~ ~ -  [ ( Y - ~ ) / ~ I T , I O ) [ Y ~ ~ $ ' -  _- ( ~ - l ) ~ , ~ o n a o n , d ) .  (56) -A,@ l + -  
27 4 f K o ( y -  1)' ( 

On dividing (56) by (55) we obtain the first-order equation in the A, w - w phase 
plane which governs the shock structure. The phase plane analysis is standard 
and we do not go into details. Figure 3 contains a sketch of a typical case. It 
should be noted that a node (stable) is always obtained upstream and a saddle 
is always obtained downstream. This is just the reverse of the Navier-Stokes 
situation (Hayes 1958). 

In order to integrate (55) and (56) in the phase plane we must resort to machine 
computation. Due to the topology of the directional field this is easily carried 
out by integrating from the saddle to the node. From this the integration in the 
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physical plane as well as the determination of t ,  and t, directly follow also by 
numerical means. The results of this computation will be discussed in the follow- 
ing section. 

To complete the picture note that from (37) and (48)  

y + ( 1  - y )  €(W + E t , )  - €2 

t1+Y)2 
T -  

and from ( 2 1 )  and (43)  the component temperatures are 

If 

~ w o - ~ ~ m ~ e r a t u r ~  theory 

(57) 

(or smaller) the theory is considerably simplified and analytical results can be 
obtained. In  this case we have 

instead of (51) .  Equations (as), (50), (54)  and ( 5 8 )  result from the two temperature 
equations discussed in Goldman & Sirovich (1967). Equations (49) ,  (50) and ( 5 8 )  
easily lead to dW/dy = - xl( 1 - w2),  I 

t, = x2( 1 - W2) ,  

A,w = z3( 1 - w Z ) ,  

(59) 

where 

Y 
with 

In  these we have introduced the Prandtl number and Schmidt number which are 
defined in appendix A. 

Solving for w in (59) we have 
o = -tanhz,y, (62) 

where we have taken ~ ( 0 )  = 0, see (41) .  

order is given by 
The velocity of the component gas is obtained from (20) and to the above 
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The above results, up to differences in normalization, are the same as those 
obtained by Dyekov (1954) and Sherman (1960) (see appendix B). It is straight- 
forward, and in fact simple, to find the higher orders in'sof the above development. 
But at  the next order the procedure is no longer self-consistent with the Boltz- 
mann equations for mixtures. In  fact, the structure of weak shock-waves can be 
considered directly from the Boltzmann equations. Expanding in ewe obtain the 
same results to the above order. A t  the next order the results diverge from those 
which would be obtained from the two-temperature equations. We therefore halt 
the perturbation expansion at  the above order. 

Turning next to the calculation oft,, we first note that (57) does not imply that 
CO is large (see (52)). Introducing (59) into (54) we have after some manipula- 
tion 

Then noting that 

a 
W - dt, btA we can rewrite (64) as - -- 

dw 1 - 0 2  z1 

with 

Integrating (65) we obtain 

with 

For integer b, one has 

For non-integer b, &(w) may be easily evaluated by machine computation. (We 
note in passing that since dt,ldw vanishes at  w = & 1,  we have that (dtldw) +aw 
passes through zero as w passes from - 1 to + 1.  Therefore t ,  changes sign.) 
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Classical Chapmn-Enskog theory 
As already pointed out the velocity field through the shock in the above two 
temperature regimes is the same as that found using the Chapman-Enskog 
equations for mixtures. Two temperature effects are only weakly coupled to the 
velocity field. If the modified Schmidt number GO is not relatively small, then (53) 
and (54) tell us that 

which is in keeping with the Chapman-Enskog theory. In  fact, if Co is not rela- 
tively small the two-fluid equations reduce to the Chapman-Enskog mixture 
equations. 

The temperature diffusion equation (7), or its present form (64), is still 
capable of describing the now higher order temperature separation. From (54) we 
obtain A2t = (ya/Co)w(l - d ) .  

That the individual temperatures cross over in this case is clear from (67). 

Alt = 0 

(67) 

4. Discussion of the results 
In  discussing the shock-wave solutions it is necessary to consider the ratio of the 

shock-wave thickness, A, to the ‘mean-free-path’, Z. For simplicity we use the 
maximum slope definition of shock thickness, and we therefore have 

If the condition (57) for the two-temperature equations is valid an a priori 
estimate for (68) can be obtained from (59) and (60) 

The same result holds for the classical Chapman-Enskog equations. This was 
obtained by Dyakov (1954) and confirmed by Sherman (1960). [The earlier sound 
propagation work of Kohler (1 949) also produces this scaling.] We note that (69) 
predicts shock-wave thicknesses which may be markedly greater than the pre- 
dictions of simple gas theory. This effect has been observed in the recent ex- 
periments of Center (1967). 

Figure 4 contains a plot of shock thickness ratios for argon-helium mixtures 
at M2, = 4-2. (69) predicts slightly thicker shock-waves, however the difference 
is always less than 5 yo. For weak shocks, at  least, the various equations lead to 
shocks of roughly equal thicknesses. 

In  order to facilitate comparison with experiment we have considered real 
gases in our calculations. By this we mean that the transport coefficients which 
appear in the theory are based on experimental values for real gases. Figures 
1, 2, 5 and 6 contain plots of the various transport coefficients necessary for the 
study of argon-helium and xenon-helium mixtures. Also we have chosen 
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M", = 4.2 in all our calculations for A-He mixtures since this corresponds t o  the 
case discussed by Sherman (1960) and to the experiments of Center (1967). 

A variety of cases were considered and a selection of the results are shown in 
figures 7-14. While a number of curious effects can be observed on these plots, it 
should be noted that the velocity overshoot first discussed by Sherman (1960) is 

Argon (7;) 
FIGURE 4. Two-fluid shock thickness ratios for A-He mixtures at M2 = 4.2. 

A-HC 

94 A 
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FIGURE 6. ,Za and Fa (a refers to 
helium gas). 
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entirely absent. It will be recalled that this effect predicts that if a binary mix- 
ture contains a trace of heavy gas this component first accelerates on entering the 
shock. 

The source of the overshoot effect can be traced to the baro-diffusion term in the 
diffusion equation. (The diffusion equation is obtained by neglecting the last 
term in (6)) and setting T, - Tp = 0.) As is well known (Chapman & Cowling 1939) 
this term implies that in a gas mixture the heavier component drifts in the 
direction of the pressure gradient. In passing through a shock the pressure in- 
creases and the heavy component experiences a tendency to  move faster than 
the lighter components. For a trace of heavy gas both the Chapman-Enskog and 
two-temperature solutions given in the last section predict that the heavy com- 
ponent velocity rises above the upstream velocity before finally being retarded 
by the slower moving lighter components. We mention in passing that Mott- 
Smith (1966) has given a very persuasive physical argument for the non-existence 
of an overshoot effect in strong shock-waves. Our discussion however will apply 
only to the theory of weak shock-waves. 

The reason for the disappearance of overshoot in the two-fluid description can 
also be explained in terms of the governing equations. Equation (51) is the 
normalized form of equation (6) in the limit of weak shocks. In  the comparable 
limit using the Chapman-Enskog mixture equations one obtains (6) but with the 
right-hand side absent. But it is precisely for the case of a trace of heavy gas that 
the right-hand side becomes important. In  this limit maB/fiiTo approaches unity 
and, for example, for A-He, C, M 0.3 and for Xe-He, C, z 0.15. Therefore even 
though e appears as a coefficient of this term it is only for the weakest shocks, 
e+O, that this term can be neglected. The term in question is clearly a relaxa- 
tion term and acts against velocity separation and hence prevents overshoot. 

An analytical criteria for the onset of overshoot can be given. First, recognizing 
that velocity overshoot is an upstream phenomena, we expand U, in the neigh- 
bourhood of w = 1, i.e. 

and hence velocity overshoot is obtained if 

On differentiating (36) with respect to u, to the lowest order this condition is 

An explicit expression for (70) may be obtained from the analysis of the saddle- 
point at w = 1. (dAluldw is the slope associated with the unstable root at  w = 1.) 
This expression is quite long and we do not include it here. The quantity in (70) 
has been evaluated under a wide set of conditions and in no case were we able 
to find overshoot. A direct proof of this non-existence of overshoot has so far 
eluded us. 
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Before remarking on the various peculiar effects to be found in figures 7-14 
we briefly discuss the notion of a self-consistent solution. 

In the derivation of fluid-like equations from the Boltzmann equation a 
number of approximations are made. If the solution of the fluid-like equations 
does indeed show that neglected terms are small compared to those retained the 
solution is said to be self-consistent. There are two types of terms which are 
neglected in the derivation of fluid-like equations from kinetic theory. The most 
wide spread approximation is the neglect of high order derivatives and products 
of low order derivatives. In  fact the symbol e in the Chapman-Enskog theory 
should be interpreted as the ratio of molecular to macroscopic scales. For our 
problem this requirement is met if l / A  < 1. As can be seen from the information 
given in figures 7-14, in all the computed cases this condition is fulfilled. As 
already mentioned the classical Chapman-Enskog mixture equations actually 
places the more stringent condition 

l/COA < 1 

on a solution. In  the regime in which Sherman (1960) found overshoot this con- 
dition is violated and the failure of these equations is thereby signalled. 

The second type of neglected term involves terms which are quadratic and 
higher in velocity and temperature diffusion. The precise conditions are given 
by ( 13) and ( 14). Normalizing ( 13) and ( 14) and reducing these to lowest order we 
obtain 

The use of the maximum value is due to the fact that (13) and (14) must hold 
pointwise throughout the flow. The values of 8 and R are given on each of the 
figures and it is seen that in each case these parameters are small. 

Figure I contains the shock profile under the same conditions for which Sher- 
man found a more than 20 % velocity overshoot in the heavy gas velocity. For 
reasons already given we now find no trace of velocity overshoot. It might be 
mentioned that the Chapman-Enskog mixture equations violate the condition 
6 ,  < 1 ,  see (2), if used in this case. Figure 8 gives the accompanying temperature 
profiles which show temperature separation. This last effect is relatively mild 
in this case. Figures 9 and 10 are again for an A-He mixture at  M: = 4.2 with 
roughly equal numbers of A and He atoms. 

Figures 1 1  and 12 also at  the same conditions but with a trace of He, exhibit 
pronounced velocity and temperature separation. For the former undershoot is 
seen to exist. The temperature oscillation for the He is quite sharp and the con- 
dition e0 < 1, see ( l ) ,  might now be too mild for self-consistency, although all 
other self-consistency conditions are met. Figures 13 and 14 show shock pro- 
files a t  MZ, = 2-5 and for a 95 yo Xe-He mixture. All the same effects as appear in 
the 95 yo A-He case also appear now. Now, however, eo is smaller and there does 
not seem to be any reason to doubt self-consistency in this case. 
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Sherman (1960) also noted a case (99 yo A-He at Mg = 4-2) for which the weak 
shock solution possesses a velocity undershoot. But he showed that in this case 
an exact numerical integration of the Chapman-Enskog mixture equations 
eliminates the undershoot. This certainly casts doubt on the presence of a velocity 
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FIGURE 8. Temperature profiles for 2 % A-He mixture at M &  = 4.2. 

undershoot. In fact we have carried out the exact numerical integration of the 
Chapman-Enskog mixture equations for the conditions stated in figures 11 and 
13. In  both cases the velocity undershoot is eliminated by these equations. 
However, in these cases as well as that considered by Sherman the Chapman- 
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Enskog mixture equations violate the condition that el > 1. We have in fact 
found cases for which the Chapman-Enskog mixture equations do not eliminate 
the velocity undershoot. Such a case is a 95% Xe-He mixture and M i  = 3.7. 
Therefore, there seems to be no reason to doubt the appearance of a velocity 
undershoot under appropriate conditions. 
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FIGURE 13. Velocity profiles for 95 yo Xe-He mixture at M2, = 2.5. 
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FIGURE 14. Temperature profiles for 95 % Xe-He mixture at M L  = 2.5. 
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Appendix A. Notation for transport coefficients 
“a 

P, 

ji = ji, +PB The viscosity of the mixture. 
R, 

X = R, + X B  The heat conduction coefficient of the mixture. 
T 

Molecular mass of the a-gas. 
The contribution of the a-gas to the viscosity. (P, is not the viscosity 

of the a-gas alone.) 

The contribution of the a-gas to the heat conductivity. (R, is not the 
heat conductivity of the a-gas alone.) 

The thermal diffusion factor (dimensionless). 
The diffusion coefficient. 

The relative temperature relaxation frequency. 2kP 1 
Q B  
AT =-- 

m, + mBQB 
?ii A, = 3 A, The relative velocity relaxation frequency, 

2m,7 8 --r 

Explicit forms for P,, X,, j) R ,  DaB are given in Goldman & Sirovich (1967). 

The normalized coefficients and their leading terms are: 
Due to their length these will not be repeated here. 

Pro denotes the upstream Prandtl number. 

?j = T o  + O(€). 

A related parameter is the modified Schmidt number C, 
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The Schmidt number itself is 

and 

Appendix B 
To facilitate comparison with the work of Dyakov (1954) and Sherman (1960) 

we briefly discuss some of the terminology found in these papers. 
The governing equations adopted by Dyakov result from a macroscopic de- 

rivation of the mixture equations (Landau & Lifshitz 1959). Therefore, they are 
placed in a more general framework than the mixture equations of the Chapman- 
Enskog procedure. The equations of both theories, however, have the same form. 
Instead of individual mass densities, Dyakov considers the mass concentration? 

c = -  pa 
P 

and instead of velocity diffusion he considers the mass diffision of the &as, 

i = pl(Ua- U ) .  

Instead of (6) and ( 12) Dyakov uses 

with 

p denotes the chemical potential. One may show that for the gas considered in this 
Paper 

lnT-- ma 1nc+- ma ln(1-c) 
ma -mg ma - m ~  

Other quantities of interest are the enthalpy, h, which in our case is 

h =  __._ Y P  
Y - 1 P  

and the entropy S, which in our case is 

t In this appendix we drop the tildes which were used earlier to denote dimensional 
quantities. 

38-2 



596 

We note in passing that (B 3 ) ,  (B 4) and (B 5 )  satisfy the first law 

Edward Goldman and Lawrence Sirovich 

ah = T a s + ( i / p ) a p + p a c .  

( d / d z ) ( p U ( h + g U 2 ) + ( P - p )  V + Q )  = 0 

i = pU(c0-c).  

Finally, we point out that the energy equation (10) is now 

(B 6 )  

and that instead of individual component mass conservation, one uses the 
equivalent 

Since Dyakov only considers a one-temperature theory, the temperature 
difference term does not appear in (B 1 )  and of course Dyakov does not con- 
sider a temperature difference equation, (7). 

The equations used by Sherman (1960) are, with minor modifications, those 
obtained by the Chapman-Enskog procedure for gas mixtures (Chapman & 
Cowling 1939) and are therefore more closely related to our work. Sherman 
introduces the number density concentration 

f = (nfiln) 

mT = fmp + (1 -f)ma 

in terms of which the averaged mass is 

(M instead of mT and N o  instead of mTo is used.) 

such that 

where the Cpa and Cpfi  are the heat capacities of the corresponding components, 
Sherman defines 

He also uses the energy equation in the form given above, (B 6), and with h 

ph = ~ a h a + ~ f i h /  = (PaQpa+PfiCpfi)T 

Pa0 ' p a  + ~fio'pfi c, = 9 

Po 
so that p Uh +pfi(2ta - u) (hfi - ha) = mCp T .  

Y k  c =--, 
Y - l m a  

For the gas studied by us 

P a  

so that 

For comparison purposes it is useful to observe that 

where 0 = mfi/ma. 

Also Sherman's definition of the ratio of specific heats ys is 

CP = y .  
cp - (IclrnTo) 

Ys = 

Finally the connexion between Sherman's shock parameter E, and ours is 
R 
Y 

Es = __ 6 .  
Y - 1  
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